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Problem Justification:

Diffusion Applications

e Heat Conduction

e Fluid Flow

e Radiation Transport
— Diffusion
— Diffusion Synthetic Acceleration

— Simplified Spherical Harmonic (SP pr) Methods



Problem Justification:

Mesh Description

e 3-Dimensional

e Hexahedra and Degenerate Hexahedra (Prisms, Pyramids,
Tetrahedra)

e Unstructured
— Block Structured

— Curved geometries



Equation Set:
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Which can be written
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Where

= Intensity

= Flux

Diftusion Coefficient

= Time Derivative Coefficient
= Removal Coefficient

= Intensity Source Term
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Properties of the Method

e Cell-centered (balance equations are done over a cell)

e Cell-centered and face-centered unknowns (required to

rigorously treat material discontinuities)

e Unstructured mesh

e Derivation valid for 1-D, 2-D, and 3-D geometries

e Preserves homogeneous linear solutions, second-order

accurate



Properties of the Method

Reduces to the standard cell-centered 7-point operator

for an orthogonal mesh

Local energy conservation is maintained

Unsymmetric matrix system

Extension of the method described in

Morel, J. E., J. E. Dendy, Jr., Michael L. Hall, and
Stephen W. White. A Cell-Centered Lagrangian-Mesh

Diffusion Differencing Scheme. Journal of Computa-
tional Physics, 103(2):286-299, December 1992.

to 3-D unstructured meshes, with an alternate

derivation.



Discretization: Conservation Equation

Integrate the conservation equation over the cell volume,
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Define cell averages and use Gauss’ Theorem:
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Discretize temporally and evaluate flux integral:
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Discretization: Flux Terms

—

We need to express FJ?H in terms of ®7H,

Start with the flux equation:

—

F}LJrl = _Dc,f€>® -+ J—j:

—
The flux source, J¢, is known.

The diffusion coefficient is known within a cell, but may be

discontinuous at the cell face.

The discretization must accurately model material discon-

tinuities.



Discretization: Flux Terms

The values of ® at four non-planar points are needed

to determine the gradient. Any four non-planar points

(P, Py, P35, Py) define a coordinate system in terms of

three vectors,

k = P, — P

| = P, — P

m = P, — P
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Discretization: Flux Terms

A Jacobian matrix converts between the (k, 1, m) coordi-

nate system and the (x, y, z) coordinate system:

- - T Odxr Ox Ox 7 .

Py ok dl Im Py
_ | Oy Oy Oy
Pyl =13 a0 om F
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which is represented as:

— —
Paj?y)Z:J Pk,l,m

Note that an equally valid reverse transformation from the
(x, vy, z) coordinate system to the (k, [, m) coordinate sys-

tem could have been used, with a Jacobian matrix equal to
J—1
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Discretization: Flux Terms

Since the four points are located along the axes in (k, [, m)-
space, but not in (x,y, z)-space, it is easier to take the
derivatives needed for the forward Jacobian than the reverse

Jacobian:

- Oxr Ox Oz ]
ok Ol 0Om
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= |k 1 m
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Discretization: Flux Terms

Returning to the consideration of the gradient term, expand

the k,l and m derivatives of ® using the chain rule:

- 09 7] or Oy 0z - 0P 7]
Ok ok 0Ok Ok ox
ol ol 9ol 0l Oy
0D or Oy Iz 0P

L Om Om Om Om | L 0z A

—
= J' vo

or, solving for ¥ ® and inserting the derivative definitions,
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ok [ Dy — Py |
Vo=3T] 2 | 3T o— 0
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Discretization: Flux Terms

Now that we know how to represent gradients from any four
points in (x, y, z)-space in (k, [, m)-space, which points do

we choose”?

We are limited to adding points within the cell to maintain

a rigorous treatment of material discontinuities.
Adding four different points for each of the six faces results
in twenty-five unknowns per cell, including the cell center,

which is clearly untenable.

Fortunately, there is a better solution. ..
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Discretization: Flux Terms

Four points are not the only way to determine a gradient:

three lines that intersect in a single point can also be used.

If we place a point (and therefore an unknown ®) in the
center of each face, the three lines formed by connecting op-
posing faces all intersect at the cell center. A single Jacobian

matrix per cell will be sufficient.
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Discretization: Flux Terms

If the vectors connecting the face centers of opposite faces

_ — —

are denoted Jy. , J;,and Jp, for the k, [, and m directions,
then the Jacobian matrix is given by:

J:[Jk Jp Jm]

and the inverse transpose matrix is:

JTH (Jl xjm) (1;7) (Jk x J)]
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Discretization: Flux Terms

There are seven unknowns in each cell. The gradient for
each face is represented by the cell value for the J =7 matrix
multiplied by the k, [, and m derivative vector for that face.
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Minor direction derivatives (for example, the [ and m
derivatives on the +k face) are evaluated across the full
cell, and major direction derivatives use a half cell.

For example,

[ 9 (Cbn—H (I)?CH—I) ]

Fhd=—D, g 370 onft—ont |+ 0y

n+1 n—+1
ol _ gntl
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Discretization: Cell Face Equations

The cell center (conservation) equation has been discretized,

but we have added 3 extra unknowns per cell.

At each cell face, we apply a continuity of flux condition:

— —

+1 a4 +1 o4
—Fir - Aay—Foy - Ay =10

where cl and c2 are the two cells that share the face f.
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Discretization: Boundary Conditions

The boundary conditions only affect the cell face equations.
On the boundaries, a Robin boundary condition is specified:

—

B O — By FIN - Ag g = B3 By

where 31, B and (33 can be specified to match

e homogeneous: CD?H =0,

—

o reflective: —Fg}ﬁl e =0,

—
o 1len+l . pn+l | o _
® vacuum: 2<I>f e.f Mo f = 0,

e Dirichlet: CID?Jrl = Py,

—

AN

e Neumann: —F(Z’Jrl N = —Dpe , or

e source boundary conditions:

—
lyn+1 _ pntl o 1
7% e.f T f = 3%
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Algebraic Solution

Main Matrix System:

e Unsymmetric — must use unsymmetric solver

e Size is (4n¢ + np/2) squared

e Maximum of 11 non-zero elements per row

Preconditioner for Krylov Space methods is a Low-Order
Matrix System:

e Assume orthogonal: drop out minor directions in flux
terms

e Symmetric — can use standard CG solver

® Size is ne squared

e Maximum of 7 non-zero elements per row
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Method Summary

Cell-centered, unstructured mesh

Derivation valid for 1-D, 2-D, and 3-D geometries

Preserves linear homogeneous solutions, second-order

accurate

Reduces to the standard cell-centered 7-point operator

for an orthogonal mesh

Local energy conservation is maintained
Material discontinuities are rigorously treated
Unsymmetric matrix system

Solves for (4ne + ny/2) unknowns, but only cell

centers (ne) remain between timesteps
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Implementation:

The Augustus Code Package

Author:

Architectures:

Language:

Solver Packages:

Installations:

Status:

Availability:

Michael L. Hall (1/94 - present)

Sun (SunOS and Solaris), SGI (IRIX), HP
(HP-UX), IBM (AIX)

Fortran-77, plans for Fortran-90

JTpack (by John Turner, LANL) for
Krylov Space methods, UMFPACK (by
Tim Davis, U of FL) for sparse direct
methods

SNLA ALEGRA hydrodynamics code,
LANL TELLURIDE low-speed flow code,
Solver for the Spartan SPj; radiation

transport code.

Completed, active development of new

features

Fmail hall@lanl.gov and we'll talk
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Implementation:

The Augustus Code Package

Spatial Mesh:

Dimension | Geometries | Type of Elements
1-D spherical, line segments
cylindrical
or cartesian
2-D cylindrical | quadrilaterals or triangles
or cartesian
3-D cartesian hexahedra or degenerate
hexahedra  (tetrahedra,
prisms, pyramids)

all with an unstructured (arbitrarily connected) format.
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Results: Second-Order Proof

3-D Random Mesh (del = 4)

Constant properties, No removal

Source = Qx?

Reflective boundaries on 4 sides

Vacuum boundary conditions on opposite sides

Analytic solution - Quartic:
O (z,y,2) =0 (x) =a+ bx + cx?
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Results: Second-Order Proof

New Method:
Problem Size (cells) Hq‘)l%i{:;;;ﬁz”? Error Ratio
5x5x5 1.0248x 102
10 x 10 x 10 2.6190x 103 3.91
20 X 20 X 20 6.6082x 104 3.96
40 x 40 x 40 1.6530x 1074 4.00

Orthogonal 7-Pt Solution:

Problem Size (cells) ||<I|>|%§<§£;;|<|D2||2 Error Ratio
5X5x5 1.0202x 102
10 x 10 x 10 2.6205x 1073 3.92
20 x 20 x 20 6.5952x 104 3.97
40 x 40 x 40 1.6515x10~% 3.99
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Results: Sample Problem

3-D Kershaw-Squared Mesh

Constant properties

No removal or sources

Reflective boundaries on 4 sides

Source and vacuum boundary conditions on opposite

sides

Analytic solution - linear

Grid size - 20 x 20 x 20 = 8000 nodes, 6859 cells

50 timesteps, 15 s / timestep on IBM RS /6000 Scalable
POWERparallel System, SP2
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Results: Sample Problem

Actual Mesh (Cell Nodes)
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Sample Problem

Results

Orthogonal Mesh Steady State Solution

Cells

phi
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Results: Sample Problem

Kershaw-5Squared Mesh Steady State

Cells

phi
0.722

0.677

. =0.633

—0.389

0.544

0.3

0.435

0.411

0.367

0.322

0.278

29



Results: Sample Problem

Kershaw-Squared Random Cutplane

Cutplane

phi
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Future and Concurrent Work

SPARTAN Code Package

Support Operator Method

2-D Symmetric Method

MHD Equations
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